INSTITUTE OF ADVANCED STUDIES

ISA Lectures 2020

January-July 2020

Please note that the ISA Lectures programme may be subject to change

Stay updated, visit our website: www.isa.unibo.it
Marine Conservation Paleobiology: The Fossil Record as an Archive of Preindustrial Ecosystem

Conservation paleobiology complements approaches of historical ecology and archaeology by melding geochemical, geochronological, and paleontological data to study human impacts on the environment. Fossil, archaeological, and other historical data have been used for decades to assess human-ecosystem interactions, but the modern-style conservation paleobiology that capitalizes on rapid advances in geochemistry, paleontology, and ecology has emerged only recently. Using multiple case examples from various habitat types and regions, we will explore the utility of fossils as a tool for improving assessment, management, conservation and restoration of aquatic habitats.

The Confessional Politics of Democracy

This lecture deploys a confessional analysis to tackle the (re)production of failing EU ‘democracy assistance’ policies towards the Middle East and North Africa (MENA). Drawing on innovative Critical Discourse Analysis of EU documents on the one hand, and on public opinion survey data on the other, the lecture illustrates the profound mismatch between what Arab citizens want and what the EU is willing to give. The first half of the lecture sets out the empirical dimensions of these policies’ failure: it details the mismatch between the EU’s supply of policy in its Southern Neighbourhood and the demand for change by ordinary citizens in Egypt, Jordan, Morocco and Tunisia. The second half of the lecture provides a framework to interpret the politics of democracy –particularly its authoritarian and neoliberal restrictions– on both shores of the Mediterranean and its recurrent failures based on a generalised model of Foucault’s fragmentary remarks on avowal and confession. It will be shown that the way contemporary social science frames the questions of democracy, development and stability/security displays confessional properties, i.e. that the discursive framing of the shared emancipatory task of democratization, far from favouring that outcome, effectively undermines it, while simultaneously re-legitimising this frame itself by blaming the anti-democratic ‘Other’ for these failures.
The challenge of sleeping through the night: a developmental or parental goal?

A good night sleep is essential for children’s development. Maintaining continuous sleep is among the developmental tasks of infancy and a pattern valued by parents. Yet, night-waking is common during the early years and most likely serves development. Parents often seek advice not only to ensure that the child is getting a good night sleep but also in order to decrease prolonged nighttime caregiving. In this talk, aspects of children’s and their parent’s needs will be highlighted and finding from a series of studies, including intervention research, will illustrate the interplay between developmental and parenting tasks. Drawing from evolutionary, motivational and neurodevelopmental framework the multiple challenges of nighttime parenting will be discussed.
Moreau Jean-François, René
Université de Bordeaux, France

Salvioli Stefano – DINES
Department of Experimental, Diagnostic and Specialty Medicine

From clinical aging towards how organisation of space is important in biology: a path from clinic to fundamental immunology and general concepts

It is widely assumed that immunosenescence involving inflamaging and cellular alterations of circulating immune cells, relies on lifelong antigenic load and persistent CMV infection. Although these factors are important, they may not be causal but consequential to a more general age-related mechanism. We propose that a major role is played by the age-associated irreversible alteration of the extracellular matrix (ECM) constituting the 3D microenvironment where immune cells operate. I will focus my talk to provide an integrated view on this topic. We gathered solid data from several fields outside immunology that emphasize the constraints imposed by space organization on the functioning of the immune system and I will decipher the potential consequences of the well-known ECM aging in explaining immunosenescence. The progressive and irreversible age-related alteration of the extracellular matrix, could actually provide an upstream mechanism and a unifying framework to explain the molecular and cellular features of immunosenescence altogether. I will argue that mobility of immune cells in this extracellular mesh is pivotal for an efficient immunity in young subjects but even more in the elderly where cross-linking of ECM components augments the mobility constraints and I will propose to include immune aging within a wider “evo-devo” prospective through the concept of space organization and its corollary mobility.
Beyond Perturbation theory: Integrability from fundamentals to applications

 Perturbation theory is an approximation method to solve dynamical equations in physics. As physical systems get more and more complicated, even with infinite degrees of freedom, perturbation theory has been a universally powerful theoretical tool. It is a series expansion of a small parameter in a similar way as an elementary mathematical approximation \(\sin(x) \sim x \) when \(x \) is small. Amazing successes of the 20th century physics can be attributed to perturbation theory. It has been applied to all the 4 fundamental forces in nature, including the strong force since its strength gets weak when quarks are very close. Therefore, it may seem that perturbation theory is enough to understand most of physical phenomena. Quite on the contrary!

 Thanks to amazing advances of both experimental technologies and theoretical methods, a lot of “non-perturbative” physics has been discovered. One of the most important challenges in physics is to establish a new paradigm for this.

 I will present integrability, which appears when a quantum system has an infinite number of conserved charges. I do it by taking two examples. The first is an excellent experiment with a cobalt compound which is a magnetic spin system described by Ising model with an external magnetic field. It realizes a huge E8 group symmetry predicted by Zamolodchikov.

 The other example is a gauge/string duality between string theories moving in 10D curved space and gauge theories in 4D. In both cases integrability is crucial.
The Genesis of the Garden: Archives and Archival Work in the Interpretation of Contemporary Literary Texts

"In recent years, thanks to the discovery of several unpublished documents related to the life and works of Giorgio Bassani, a real archive of the writer’s work has begun to take shape. It consists of a constellation of documents that includes manuscripts and typescripts of Bassani’s novels, short stories, and poems; letters to publishers and friends; film scripts and scenarios; notebooks and media texts, such as radio and television interviews, as well as short films dedicated to the preservation of the Italian artistic and naturalistic heritage.

In this seminar, I will present the most significant stages of this process of rediscovery, cataloging, and publication of the documents, carefully coordinated by the Giorgio Bassani Foundation, in Ferrara, and crowned by my own recent discovery, in the archives of the Bassani Foundation, of an additional unpublished chapter of The Garden of the Finzi-Continis, which Bassani wrote, revised, but then decided to expunge from the 1962 final version of the novel.

In light of all these documents, the seminar will use Bassani’s work to illustrate the relevance of archival material and research in the interpretation of contemporary literary texts. Today, thanks to the old tools made available by traditional philology, as well as to the modern ones developed by the genetic criticism of literary texts, we can work on contemporary literary texts as we have done for many years on ancient and medieval ones, i.e., we can study their genesis, thei"
Redefining the Human for the 21st Century Human Sciences

In the 21st century, we are now seeing powerful outside forces that shape and alter the experience of being human. How should current humanistic practice respond to these changing ideas? What happens now to traditional ideas at the heart of the human sciences? How might various humanistic practices incorporate emerging ideas about the human into their research and their pedagogy? My lecture will first summarize the medical, philosophic, and technological trends that have resulted in altered definitions of the human body and mind. I will highlight recent work in history, literature and elsewhere that integrates these trends. I will propose that transdisciplinarity—especially the crossover from the humanities and the social sciences to the sciences, as well as the reverse—models the way forward, out of the disciplinary impasse once characteristic of high poststructuralism. Last, while many hail the new human under the banner of the “posthuman,” I will contend that we as humanists gain more by remaining rooted and invested in a more capacious definition of what we are. In this way, we can explore new disciplinary paradigms, cross once intractable boundaries, take up expanded topics of inquiry, and guarantee our own relevance going forward.

Further didactic activities: Prof. Wallace will held a seminar for the PhD students at LILEC and in particular to the EDGES curriculum (Gender and Women’s Studies) and a conference for the CISR. See "Motivazione" for further details."
Studies of Natural and Artificial Photosynthesis

Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies of oxomanganese complexes. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy, and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the nature of the reaction mechanism responsible for oxygen evolution. In this lecture, computational modeling studies will be introduced, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly describing the influence of the surrounding protein proposed chemically satisfactory models of the OEC that are maximally consistent with experimental results. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting as described by the intermediate oxidation states of oxomanganese complexes. Recent advances will be reviewed with emphasis on studies of the OEC of PSII and semiconductor materials functionalized biomimetic catalysts for artificial photosynthesis.
The importance of the prognosis and diagnosis of composite structures in engineering design

Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have become composite materials very attractive for application on different fields. However, even new designs are still very conservative, because the composite structure failure phenomena are very complex. Although several models and failure criterion already exist for the prediction of damage in composite materials, most models do not produce acceptable results for detailed designs. This occurs as most of these models are based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This seminar shows the principal fundamentals to design and analyze composite structures. Thus, it is presented approaches for overcoming the main challenges, which focus on prognosis and diagnosis of composite structures. Regarding to prognosis of composite structures, new damage and failure models based on multiscale analysis and physical failure mechanisms based on Continuum Fracture Mechanics are shown and discussed. Regarding to diagnosis of composite structures, development of SHM (Structural Health Monitoring) systems combining different methods are presented and discussed its limitations and advantages. Finally, it is shown how those approaches affects the industry, mainly in the aeronautical field.
The inorganics of living

This talk will focus on the general misconception that living organisms are made of “organic matter” and that non-living matter is associated with “inorganic materials”, trying to subvert this general notion. Indeed, transition metals are essential cofactors in about one third of all the enzymes, without which life would be impossible. Metal-containing proteins are able to accomplish specific tasks that are difficult for “organic” biomolecules, such as redox reactions, electron transport in photosynthesis and cellular respiration or the catalysis of several reactions. Yet, high concentrations of transition metals are toxic. To control the availability of metals and direct the metals to the correct enzyme targets, proteins collectively known as ‘trafficking proteins,’ are employed. These proteins control the import/export of specific metals, regulate the expression of the importers/exporters (metallosensors) and deliver the correct metal to the enzyme target (metallochaperones). Misincorporation/misregulation of metals is associated with a number of diseases, and nickel, in particular, is strongly associated with bacterial pathogenicity, making the nickel trafficking system an attractive antibiotic target. Moreover, trafficking proteins must be able to discriminate between the desired metal ion. This seminar will discuss aspects of how proteins discriminate between metals, using a structure/function approach and drawing on the metallo-biochemistry of nickel.
Women’s labour activism in Eastern Europe and Transnationally: Towards a More Inclusive Global History

Conceptual issues evolving around the complex relationship between gender and class, between women-only as opposed to mixed-sex organizing, and with regard to often racialized difference and connection in an unequally developing world, have long constituted productive challenges for the historiography of women workers’ and female trade unionists’ organizing and activism. This historiography has both partaken in and developed together-apart from the new global history of labor and the new historiographies on women’s internationalism and global governance. Drawing on the emerging study of women’s labour activism in Eastern Europe and transnationally, as well as research examples from other parts of the world including Western Europe and the Global South, this lecture invites historians of labor, gender and internationalism to reconsider how historical context and location has shaped our concepts and research paradigms. Highlighting select lacunas and challenges in this area of research field it suggests a number of conceptual moves that can help us to develop innovative research agendas. This includes approaches that focus on historical interaction across political cleavage, the issue of mass-organizing as differentia specifica of women’s labor activism, the overcoming of gender- and class-first biases in the study of the history of labor movements, women’s movements, and more inclusive views on internationalism and global governance.
Multiphase flows are the key to a large number of industrial processes, with much to do with energy and environment. Microfluidics often involves tiny droplets in micro-channels, and has applications to the drying of the GDL in PEMFC hydrogen fuel cells, to important biomedical engineering issues with encapsulated bubbles in the blood stream, and catalysis issues. At a larger scale, chemical engineering processes such as bubble columns, distillation, carbon capture, are limited by typical multiphase flow factors such as gas-liquid boundary layers or clogging. Fuel combustion in many applications such as aircraft, rocket or automotive engines involves spraying, a still poorly understood mechanism. At an event larger scale meteorite impact leads to the formation of tektites, tiny materials produced from droplet of molten rocks.

All of these phenomena can be studied numerically using modern interface simulation techniques. VOF techniques developed in Paris and Bologna are gaining increasing acceptance as a reliable, mass-conserving technique. They are supplemented by other novel ideas, such as machine learning using neural networks, fast molecular dynamics, octree grid adaptation, and further in the future, quantum computing.
Cracking the disease code: analyzing genomic variation to identify pathogenesis pathways and predict disease

At least a fifth of the exonic non-synonymous variants in genomes of healthy individuals alter the molecular functions of the genes that they affect. The fact that we remain healthy in spite of these changes is evidence of our species robustness in a certain range of biochemical functionality. Distinguishing between the combinatorial loads of the functionally non-neutral variants in relevant pathways of disease-affected and healthy individuals contributes to our understanding of the genetic mechanisms of complex disease.

Our lab’s novel computational methods leverage functional effects of genome variants in disorder-specific genes to predict individual disease susceptibility. We develop and test our methods using the genetic and clinical data from patients affected by a range of complex disorders, such as Crohn’s disease, COPD, and Tourette disorder. For Crohn’s disease (CD), in particular, our machine learning method, AVA,Dx (Analysis of Variation for Association with Disease) accurately differentiates CD patients from healthy controls using whole exome sequencing data. Notably, AVA,Dx was developed using only 111 individuals; larger training panels and additional features, including regulatory variants and environmental factors, e.g. human-associated microbiota, are expected to improve model performance.
Couplings on the run - from fundamental particles to quantum gravity

The concept of scale (in-)dependence has become a fruitful paradigm across the natural and social sciences with many applications ranging from mathematics to finance and biology. In physics, one of the fascinating lessons in a quantum world is that the strength of interactions between particles becomes scale-dependent. Curiously, regimes where interactions become scale-independent offer the most direct link between microscopics and the macroscopic world. In this talk, I explain how the scale dependence of fundamental couplings can be exploited in new ways to search for theories beyond the Standard Model. I also discuss the prospect and challenges for scale invariance in quantum theories of gravity.

How the brain helps protect us against infection

Descartes used to say that mind is radically different from the body, being an incorporeal, “thinking entity”, so how can mind and body interact if they differ in this way? Answering this question, that troubled many philosophers, psychologists and neuroscientists throughout history, is not a simple matter. We now know that the brain “talks” to the rest of the body through peripheral autonomic nerves. In particular, the brain, activating a specific set of sympathetic nerves, influences the way the body reacts to a severe systemic infection. Sepsis is a life-threatening illness that occurs when a bacterial infection reaches the blood. It occurs in about 30% of patients in intensive care units (ICU), it frequently leads to organ dysfunction and is the leading cause of death in ICU patients in developed countries. Although numerous advances have been made in the treatment of critically ill patients more research is urgently needed. In recent important studies, we have shown that the brain, via an action on specific peripheral sympathetic nerves has a major influence on the ability of the body to fight off infection, leading to a rapid clearance of bacteria and a much more rapid recovery. We are now investigating the mechanisms by which the brain and the sympathetic nervous system interact with the immune system in order to develop a clinically relevant treatment, which would have a major impact on the treatment of this deadly condition.
Maternal brain hyporesponsiveness during pregnancy: what’s good for the baby may not be good for mom

Pregnancy induces dramatic changes in homeostasis that support the developing fetus. Among these maternal adaptations is remarkable brain neuroplasticity, which prepares the mother physiologically and behaviorally for optimal fetal development, delivery, and mothering. Frequently, however, maternal homeostasis becomes compromised as a result. This lecture will focus on select changes in the hypothalamus, which is a key integrative regulatory region that influences multiple modalities, including energy balance (food intake and energy expenditure), cardiovascular and body temperature regulation, and sleep. The overarching theme is that the extent and rapidity of normal brain regulation is suppressed during pregnancy. Key examples: 1) Pregnancy increases food intake in part by suppressing the anorectic effects of leptin. In addition, the brain becomes resistant to the sympatheoxcitatory effects of leptin and insulin. Because increased sympathetic activity to muscle drives glucose uptake, this adaptation redirects glucose from maternal muscle to the fetus. However, in today’s world, the resulting positive energy balance can exacerbate maternal obesity, which harms both the mother and child. 2) Pregnancy prevents a normal fever response, which circumvents the harmful effects of high body temperature on fetal development, but impairs the ability of the mother to fight infection. 3) Pregnancy disrupts sleep, which is linked to preterm birth and peripartum depression.
Anchor universities are essential change agents in Europe’s regional economies

In the current era of rapid digitalisation, where knowledge and human resources became more geographically distributed and universities have become globally connected, many research-intensive universities are now also subjected to government pressures and stakeholder expectations to contribute more to local and regional socioeconomic development. There is still a major lacuna in our knowledge and systematic understanding of how these universities manage to reconcile these (potentially conflicting) impacts on their organisational mission, daily operations and competitive strategies. Are universities indeed shifting their attention to issues and engagement in the local area, or are they still ‘playing on all fields’?

Focusing on university research cooperation patterns and trends, it is unclear how interacting processes of localisation, regionalisation and/or globalisation have impacted on research cooperation patterns and university-business interactions. Although each university and its geographic area is unique, the (expected) role of research universities in their local ‘innovation ecosystems’ is likely to exhibit general patterns and trends (that perhaps can be emulated elsewhere). This opens up benchmarking opportunities in terms of comparing good practices and identifying competitive advantages. How important is the spatial distance between the university and its partners? How distance-dependent are the ‘pull factors’ affecting the way research-intensive universities are.
Microbial collections: resources for technological advances

The biological resources are fundamental for the economic and social development of the mankind and their sustainable use and conservation has great importance. The microbial culture collections have now key roles to play and they are now more than repositories. They are Biological Resource Centres (BRCs) that are reference centres for sustainable development and biotechnological advancements. In-depth information is now preserved in microbial collections about each individual microorganism. With the advent of powerful molecular techniques presently, the knowledge on the organization of the genomes of the biological entities provides a powerful instrument for advancement of science and biotechnology. Microbial collections will serving towards the future needs of the mankind.
Rule of law backsliding in the EU: What it is and what must be done about it

This lecture will focus on the issue of ‘rule of law backsliding’ in Europe which can be defined as the process through which elected public authorities deliberately implement blueprints designed to systematically weaken, capture and/or annihilate internal checks on power. This process facilitates the establishment of de facto electoral autocracies and one-party states. In the EU, Poland and Hungary have raised particular concerns in this respect and they are now both subject to Article 7(1) TEU proceedings. Rule of law backsliding’ is therefore no longer a theoretical concern but a clear and present danger which risks fatally undermining a common legal framework which the European Court of Justice has described as ‘a structured network of principles, rules and mutually interdependent legal relations linking the EU and its Member States, and its Member States with each other’. Before presenting possible solutions regarding the way forward, an overview of the EU institutions’ answers (or non-answers) to this problem will be offered.

Public Debt, State Action, and the Transformations of Capitalism: The United States from the Civil War to the First World War

During the US Civil War, the Union amassed a national debt of enormous, and unprecedented, scale. And the politics involved in borrowing that money from the American public, and then managing such a huge debt--politics involving taxation, currency, and banking--profoundly changed the US state after the Civil War, and how the state could shape the economy. This lecture will argue, through the lens of public debt, that the American state was not a laissez-faire state in the end of the nineteenth century, but on the contrary had a profound impact in shaping American capitalism. Public debt became a profoundly political issue during the Civil War, and remained so as it was central to the contests around wealth creation and redistribution during the Gilded Age and the spectacular second industrialization that made the country into the first economic power in the world by World War I.
Crisis, conflict and critical diplomacy: EU perceptions in Ukraine after the Maidan

Ukraine is currently embroiled in conflict which threatens the EU’s eastern edges. It is critical that Europe diagnoses and understands EU perceptions in this volatile strategic neighbour and tracks expectations. The seminar traces perceptions towards the EU, EU Member States and broader visions of Europe in this conflicted society. It focuses on EU images in key issue areas of economy, politics, foreign policy, energy, climate change, civil society, culture and education, analysing the EU’s perceived capability, intent and affinity. A systematic account of EU perceptions in Ukraine is argued to equip Europe with operational and programming level tools and aid EU external relations informed by EU Global Strategy 2016. The intensity of the conflict and Ukraine’s new leadership makes EU diplomacy much more critical than in non-conflict situations. The seminar discusses internal and external EU narratives disseminated in Ukraine – for which audiences and with what reception. It traces external views on the EU’s: exit from its crises; response to the Russia-Ukraine conflict; attraction as a destination for migration, investment, business and education; structural support and civil society outreach; and role as a legitimate and credible partner. Informed by IR’s Strategic Narrative Theory, the seminar compares formation, projection and reception of EU narratives in Ukraine. It examines media images of the EU, and perceptions of the EU and its states among Ukrainian elites and youth.
Understanding human life history variation: sleep patterns, personality traits, relationship status, and hormones

Several lines of evidence suggest that eveningness is associated with traits that favor short-term mating such as higher extraversion, novelty-seeking, risk-taking, and short-term relationship orientation in both males and females. Night owl men also report a higher number of sexual partners than early-morning men, who instead, show personality and behavioral traits typically associated with slow life histories. Evidence also exists that autistic-like and schizotypal personality traits reflect opposite sides of a continuum of variation in personality and cognition that are best understood in reference to other slow and fast life history adaptations. Cortisol and testosterone may be some the physiological mechanisms underlying psychological and behavioral traits associated with slow and fast life histories. Both cortisol and testosterone levels differ between individuals who are single and in relationships, with cortisol being associated with some aspects of personality and stress, while men’s testosterone is more directly linked to variation in courtship activity and sexual promiscuity.
Chemical Modification of Biopolymers Might Not be the Next Step Forward: A Journey Towards Green Chemistry

Natural polymers are major raw material in food packaging, composites, textile industries etc. but usually display a very poor microbial and moisture resistance. Many chemical methods can be used to modify natural polymers, that involve a lot of hazardous chemicals. Proper handling and disposal of chemical waste can also increase the production cost of the end products. Alternative methods, more environmentally friendly, should be adopted for surface modification of natural polymers.. Surface functionalization of natural polymers by alternative green methods may outshine the chemical methods for effective industrial use. Plasma treatment, treatments using fungi, enzymes and bacteria provide innovative solutions to increase the performance of biopolymers with new properties including strength & stiffness, resistance to moisture & microbial attack for successful industrial applications. Modification of natural polymers by enzymes, for example, is safer and more advantageous as compared to the chemical methods because of high reaction specificity of enzymes and milder reaction conditions. Cost-effectiveness and few other disadvantages are major problems for the commercialization of such methods. Scientists across the world are facing now the big challenge to find more green ways to modify natural polymers and thus widen the use of the waste-biomass.. This will ultimately benefit our surrounding environment and definitely lead towards a greener future.
Networking in the Big Data Industry 4.0 Era

The volume of data produced today is increasing to astronomical levels; such huge volumes of data are currently known as Big Data. Indeed, the diffusion of accurate sensors and tablets, together with the widespread use of digital factory, has even turned individuals and machinery into active sources of data production. The amount of data produced daily far exceeds the terabytes order. Equally important is the information generated by the use of 5 billion mobile phones worldwide. These realms of data must also be processed to transform them into useful information and discover hidden inter-data relationships. Today, we are on the verge of a new industrial era, and advancement will depend crucially on our capacity for effective and efficient communication of such enormous quantities of data. Along that guideline, it is necessary to discuss the major challenges for networking technology in the provisioning of communication in the emerging era of Industry 4.0.

The Politics of Latin American economic crises: the Argentine case

Recent theoretical and empirical research in political science has established a link between responses to currency crises and certain structural and contextual characteristics of countries. Rigid labor markets and a large export sector would make external adjustments to internal ones less costly. In contrast, in countries with relatively flexible labor markets and a private sector that is indebted and in need of imports, austerity would be less costly and more preferable than a devaluation. The purpose of the paper is to discuss the main theories in political science and political economy that explain the decisions in the face of exchange rate crises and apply them to the responses of Argentine governments to balance of payments crises.
Precarious pathways to employment for young people? Unpaid, temporary and involuntary part-time work in transitions from education to employment. Pathways into employment of graduates

The lecture will deal the impact of various types of unpaid and involuntary temporary or part-time work on the early career outcomes of graduates who completed degree courses in 2009/10. In the past, this group has had less difficulty than school-leavers in making the transition from education into work, but as competition for graduate jobs has grown, so has the use of unpaid work experience as a gateway into employment in particular sectors and professions. The experiences of a number of more recent graduates are also explored to assess the extent to which graduate opportunities have improved since the 2009/10 cohorts entered the labour market.

Degrees of advantage? A longer-term investigation of the careers of UK graduates

The lecture will provide an accurate picture of the kinds of jobs that UK graduates are doing in the longer-term, and how they got them. In particular, the lecture will deal with the effect of the 2008-2009 recession on graduate employment, and with the impact of student debt on graduate careers. Finally, the lecture will compare the findings with the previous surveys (Futuretrack Project) administered to the same cohort of graduates. The final discussion will concern the policy implications for UK higher education system.